Tag Archives: genetic testing

Guide to Genetics Testing

A Clinical Genetics Approach to Understanding
Genetic, Multiplex and Health Testing

Jerold S. Bell, DVM

     The increasing availability of genetic screening tests, DNA tests,
and now multiplex test panels also requires an understanding
of what the tests tell you.       Join us in this webinar and learn:

– The practical applications for using the results of these tests
to improve the health of dogs

– The dangers for the inappropriate use of genetic tests to dog health
– The roles of the breeder, dog owner and veterinarian
in utilizing genetic tests

Running time: 75 mins

Free registration compliments of

Veterinary Professionals can earn CE credit (Approved by AAVSB RACE,
NY State, NJVMA) by logging into VetVine (it’s free to join)
and registering to view the video on this page

AKCCHF – Clinical Genetics & Health Testing

Click the link above to access this video seminar.

 

Death by a Thousand Health Tests

Food for thought is always a good thing, at least in my world, it keeps my mind open to new ideas. As I’ve aged I’ve found it’s ever more important not to get stuck in my ways and thinking about what other people have to say on a topic keeps me out of ruts.  So when I read the article I’m sharing with you today about health testing, I found myself thinking. Now, a word of warning, some of my close friends would tell you, “Sally’s thinking takes some rather weird detours now and again, so when she says “I was thinking” you might wanna run for cover!”

We all talk about being a responsible breeder, and of course, we consider a part of that responsibility to be health testing of the parents. Now mind you, I’m getting to that place where I’m almost old as dirt, so I’m one of those breeders who started in the game long before the majority of the health tests of today were available. While I’m all for health testing to gain knowledge of what is in the genes I’m about to mix together, I’m also one of those breeders who will tell you to use a good ole dose of common sense when breeding. While I’d never throw health testing to the side, I am also realizing that as the population of Gordon Setters declines, so follows our number of breeding options. This is a big conundrum we face folks, and it will take dedication, smart decisions and some good old common sense to preserve the best of our breed.

Sally Gift, AZ              Photograph by Susan Roy Nelson, WY

With that said, I don’t know as I agree with everything in this article, but I do know it will give you some food for thought so I’m sharing, for your reading and thinking pleasure.  If you’d like to share your thoughts after reading this feel free to use the comment section!

Breeder On The Edge

Death From a Thousand Health Tests by Amanda Kelly

AUTHOR:  A dedicated hobby breeder in a terminally rare breed, Amanda Kelly perpetually finds herself on the edge of everything from ecstasy to bankruptcy, quitting and insanity.

I had a really interesting conversation with a geneticist the other day that got me thinking: science is offering us more and more great ways to evaluate the health of our dogs…but when does enough turn into too much? When do we cross the threshold from helpful information to complete paralysis? Or outright bankruptcy? How do we avoid both?

Prioritization
The test we were discussing is quite a new one in my breed (Toy Manchester Terriers). It is for a condition called Xanthinuria that causes dogs to form a very rare form of kidney stone. There have only been three clinically affected dogs that I am aware of (full disclosure: we bred one). After encountering the issue, a fellow breeder did a little digging and discovered that a marker associated with the condition in humans worked for our breed as well. Kudos to her for being proactive and finding out more! The American and Canadian breed clubs helped proof the test and voila, it is now available commercially at quite a reasonable cost.

When I looked at dogs in my own breeding program that came up as carriers however, I was surprised as I would have expected more of our puppies to have or be forming stones than was the case.  So, what does that say about the disease? Do all affected puppies form stones? If not, what is the rate?  I found the answers to those Qs simultaneously helpful and troubling.

Apparently, current thinking is that approximately 50% of males with two copies of the mutation form stones or have associated kidney issues, while very few females with the same status have a problem (likely because they do a better job of emptying their bladders). Now, these are just rough estimates because the disease as a whole is rare and hasn’t been extensively studied, but it does raise an important question: what are we as breeders to do with this information and associated results of the genetic test?

The Jigsaw
The simple fact is that the more tests we have, the more pieces of info we have to try and reconcile when planning a breeding. At present, Toy Manchester breeders as a group are variously clearing things like hips, patellas, eyes, thyroid, and hearts plus DNA testing for von Willebrand’s Disease, and, now, potentially xanthinuria. That’s 7 tests, some with questionable value based on anecdotal and surveillance evidence, if we’re being honest. We’re also actively working to identify a test for juvenile cardiomyopathy.

The end result of all of that testing is a ton of information, which is great from the perspective of evaluating the health of individual dogs but also creates a number of very real problems for breeders in areas like liability, reputation and cost.

In the past, these factors were certainly in play but their effects were somewhat muted. Breeders worked for years to learn about their breed and their lines so they could make informed decisions and minimize the risk of producing issues. Health tests initially concentrated on measuring phenotype as an indicator and we worked with what we had. The important thing was that we could confidently tell puppy buyers we had done everything possible to produce healthy, happy puppies and if a problem appeared we were solid in the knowledge we had used all available tools to their best advantage.

Enter the genetic test. In my breed, the first one was for von Willebrand’s Disease (a blood clotting disorder). For years this disease was monitored by assay testing that measured the actual amount of the specific type of clotting factor in the blood and projected genetic status based on corresponding ranges. It was a pain to do but everyone muddled through as it was one of the few standard health tests most breeders did in the 1980s and 90s. When the genetic marker was identified, some breeders lost their ever loving minds. Dozens of valuable dogs were promptly spayed and neutered while breeders across North America began making pronunciations about “never” breeding a carrier even to a clear.

There’s no question, needless damage was done to the gene pool — especially when you consider there had never been a documented case of a Manchester actually bleeding out because it was vWD affected (at least not one I am aware of). Eventually breeders learned how to work with the DNA results and things calmed down. Our new test allowed us to easily avoid producing “affected” puppies (i.e., a dog with two copies of the gene, not necessarily clinically affected) and, regardless of the actual effects of the condition itself, doing so quickly became “right” and “just”.  It was an approach we ourselves endorsed and followed because, after all, “responsible breeders” test.

And thus, the line in the sand was drawn. It’s a line we in the dog community drew ourselves and it’s one most of us dare not cross.

Unlimited Liability
The scientific advancements that brought us more genetic tests took place against an active backdrop that included the rise of animal rights, increasing anthropomorphization of pets, emergence of puppy lemon laws, and the advent of social media. Now, it may seem odd to bring those factors into a discussion of genetic testing, but they each play a very important role in describing the environment within which we are working. An environment that values reputation above all else and that pits breeding decisions against financial liability in a way many breeders don’t consider.

Any breeder with two licks of sense knows that when it comes to breeding dogs, the most important possession you have — more important than any ribbon you may ever win — is your reputation. Your reputation affects everything you do, from access to stud dogs and puppies to demand for same. In a subjective sport like ours, it can even affect your ability to succeed in the show ring.

Protecting, fostering and growing a reputation can become all-consuming. Let’s cut to the chase here: We’re operating in an environment that can make a competition out of anything — which is why sometimes reputation management, and by extension health testing, becomes as much about one upmanship and moral superiority as it is the well-being of the dogs in question. That probably explains why many of the tests done in my breed are done by rote…because they are available, not because we have objectively identified a need for them. Not because we have established that rates of thyroid problems or eye issues, for example, are any higher in our breed than in the general dog population. No, we do them because we can and because we feel (tell one another?) that we should. And why is that? It’s because we have established as fact within our community that good breeders test and bad breeders don’t. So, we all work extra hard to make sure our conduct is above reproach.

That core belief is just as strong outside of the dog community, where we have worked hard to battle animal rights messaging by establishing health testing as a key feature differentiating responsible breeders from backyard breeders. And it’s a great message — easy to understand and easy for the public to actively measure when they are talking to breeders. The trouble is, that message comes pre-loaded with expectations we can never live up to. Expectations that if you buy from a good breeder your dog will never ever have health issues. That health tested parents won’t produce problems. That responsible breeders can be God.

And therein lies the problem. The more health testing we do, the bigger the gap grows between public expectations and the reality of what we can deliver…and with it, our financial liability. Because hey, don’t forget, in addition to health testing, responsible breeders also guarantee their puppies. Whether through provision of a replacement puppy or return of purchase funds, those guarantees do carry financial risk and can’t be dismissed at the best of times and even less so as puppy lemon laws increasingly make puppy health a legal matter. So, tell me…how do you think small claims court would view a breeder that knowingly produces a problem? Or one that unknowingly produces one because they failed to use the tests available? It’s a perfect catch 22 in the making.

Risk Reduction
It’s a simple axiom that the more health testing available, the less we talk about what we’re trying to avoid producing and the more we talk about what we are willing to risk producing. There isn’t a perfect dog out there and every biological organism possesses deleterious genes for something, regardless of whether we can test for it or not.  The more tests available, the more complicated planning breedings becomes because we all naturally want to avoid the chances of producing any problem at all.  But is that a realistic goal?

What did I say we were up to in my breed – seven tests? Eight? Heck, even I lose track sometimes. And all of these tests in an era when the number of puppies being produced continues to drop at an alarming rate. Under 200 Toy and Standard Manchester Terriers “combined” were produced in North America last year, so I’m sure you can image how difficult it might be to match test results for potential breedings (particularly if we’re testing for everything under the sun). Or what the costs of doing those breedings might be as we look further and further afield, let alone the relative cost of doing the health screening to begin with in a breed with relatively small litter sizes and low purchase prices. The financials would rock your world and have you questioning my sanity, so we won’t go there other than to say red is a better quality in a new coat than a ledger (but I digress…).

I asked a few researchers and vets what they felt breeders should do with test results when there are many to consider.  The consistent response was that we need to prioritize — and that’s a completely reasonable thing for a scientist to say…and a very difficult thing for a devoted dog breeder to actually do.

Never mind the costs, appearance or liability — I genuinely don’t want to be responsible through conscious decision for producing a sick puppy. It is one thing to employ testing, tools and techniques to theoretically reduce disease and quite another to look at a plethora of results and say “This one I can live with.”

And what happens once the die is cast?  If we use Xanthinuria as an example, I could choose to breed two carriers together and test all of the puppies…but then what? Sure, knowing a puppy has two copies of the gene and is at higher risk of forming stones will be helpful to an owner who could keep the dog on a low purine diet and perhaps avoid issues altogether…but could I sell a puppy like that? For how much? Would anyone take it if I was giving it away? What level of financial responsibility do I hold if it does develop an issue two, five or 10 years down the road? What if there are multiple puppies with two copies of the gene in the litter?

And that, ladies and gentlemen, is the ethical dilemma of the future.  Perhaps we in smaller, rarer breeds are dealing with it sooner, but it is a dilemma I truly believe every breed and breeder will face at some point.  It has the potential to be absolutely paralyzing as we seek to do the right thing in a world where that is increasingly less black and white than it seemed a few short years ago.

I don’t know exactly how we can or should approach it — perhaps I’m hoping you’ll be able to tell me. I suspect that monitoring of actual breed health through health surveys and breeders sharing information on what they are seeing will be increasingly important if we wish to prioritize according to real information. And I do know that one of the things we absolutely must do is change how we discuss health testing. The way we talk about each other (oh Lordy, put a star next to that one!) and to each other as well as how we portray ourselves to the public. Just as important, we have to think about health tests and results holistically in the context of our breed and gene pool. In our rush to erase problems through testing, we are shown again and again that the devil we don’t know is often worse than the devil we can test for.

What To Do?
This article isn’t intended to form the cornerstone of a campaign against health testing. Far from it. I truly believe we need to use the tools available to us, particularly if they are able to help us avoid devastating issues facing our dogs and puppies. In fact, I and others in my breed have worked hard for more than a decade to see a genetic test developed for juvenile cardiomyopathy because it is a brutal, deadly disease and I want all of us to have a tool that will allow us to make informed choices and stop guessing at how to avoid it.

But I’m also a realist. Health management is a tough nut to crack even for trained geneticists let alone the average breeder doing their best to navigate an increasingly complex and technical landscape. Giving us the test results is the easy part, it seems — figuring out what to do with them is our next great challenge.

Small Population Breeds and Issues of Genetic Diversity

bell-jerold-1520260577 By Jerold s Bell DVM, Clinical Associate Professor of Genetics, Tufts Cummings School of Veterinary Medicine.  Reprinted by permission of the author.

(This article was originally published in the March 2007 AKC Perspectives Delegates Newsletter.)

Issues of genetic diversity are a concern to dog breeders, and this can be especially so for breeds with small populations. The concern is whether there is enough genetic variation within a breed’s gene pool to maintain health and vitality. Breeders should be concerned about genetic diversity, because there are examples where damage has been done to a breed due to breeding practices. Restriction of genetic diversity can also occur in large population breeds.

All genes come in pairs: one from the sire and one from the dam. Each gene in the pair is called an allele. If both alleles in a pair are of the same type, the gene pair is homozygous. If the two alleles are different, the gene pair is heterozygous. While each dog can have a maximum of two different alleles at a gene pair, many different alleles are potentially available to be part of the gene pair. The greater the number of alleles that are available at each gene pair (called genetic polymorphism), the greater the genetic diversity of the breed.

If there is no breed diversity in a gene pair, but the particular homozygous gene that is present is not detrimental, there is no negative effect on breed health. The characteristics that make a breed reproduce true to its standard are, in fact, based on non-variable (that is, homozygous) gene pairs.

The origins of the breeds have a lot to do with genetic diversity. A breed established with a working phenotype tends to have diverse founder origins, and significant diversity. Even with substantial population bottlenecks, the breed can maintain considerable amounts of genetic diversity. This was shown in a molecular genetic study of the Chinook breed, which was reduced to 11 modern founders in 1981. Breeds established by inbreeding on a limited number of related founder individuals could have a reduced diversity. Many breeds have also gone through diversity reducing bottlenecks; such as occurred during World War II. For most of these breeds, their gene pools have expanded through breeding for many generations, resulting in a stable population of healthy dogs.

There are two factors that must be considered when evaluating genetic diversity and health issues in a breed; the average level of inbreeding, and detrimental recessive genes. With a small population, there is a tendency to find higher average inbreeding coefficients due to the relatedness between dogs from common ancestors. There is, however, no specific level or percentage of inbreeding that causes impaired health or vigor. The problems that inbreeding depression cause in purebred populations stem from the effects of deleterious recessive genes. If the founding population of a breed produces a high frequency of a deleterious recessive gene, then the breed will have issues with that disorder. This can be seen as smaller litter size, increased neonatal death, high frequency genetic disease, or impaired immunity. If these issues are present then the breed needs to seriously consider limited genetic diversity.

The issue of high average inbreeding coefficients is one that all breeds go through during their foundation. As the population increases and the average relatedness of dogs goes down (based on a fixed number of generations), the average inbreeding coefficient for the breed will go down. The effect of initially higher inbreeding coefficients in small population breeds will depend on the presence of deleterious recessive genes that will be expressed when homozygous.

Some breeders discourage linebreeding and promote outbreeding in an attempt to protect genetic diversity in their breed. It is not the type of matings utilized (linebreeding or outbreeding) that causes the loss of genes from a breed gene pool. Rather, loss of genes occurs through selection: the use and non-use of offspring. If a breed starts limiting their focus to breeding stock from a limited number of lines, then a loss of genetic diversity will occur.

The process of maintaining healthy lines, with many breeders crossing between lines and breeding back as they see fit, maintains diversity in the gene pool. If some breeders outbreed, and some linebreed to certain dogs that they favor while others linebreed to other dogs that they favor, then breedwide genetic diversity is maintained. It is the varied opinion of breeders as to what constitutes the ideal dog, and their selection of breeeding stock based on their opinions, that maintains breed diversity.

The most important factor for diminished genetic diversity in dog breeds is the popular sire syndrome. The overuse of a popular sire beyond a reasonable contribution through frequent breedings significantly skews the gene pool in this direction, and reduces the diversity of the gene pool. Any genes that he possesses – whether positive or negative – will increase in frequency. Through this founder’s effect, breed related genetic disease can occur. Another insidious effect of the popular sire syndrome is the loss of genetic contribution from quality, unrelated males who are not used for breeding. There is a finite number of quality bitches bred each year. If one male is used in an inordinate amount of matings, there will be fewer females left for these quality males that should be contributing to the gene pool. The popular sire syndrome is a significant factor in both populous breeds and breeds with small populations.

The best methods for ensuring the health and diversity of a breed’s gene pool are to:

  1. Avoid the popular sire syndrome.
  2. Utilize quality dogs from the breadth of your population to expand the gene pool.
  3. Monitor genetic health issues through regular health surveys.
  4. Do genetic testing for breed-related disorders.
  5. Participate in open health registries, such as CHIC (www.caninehealthinfo.org) to manage genetic disorders.

 

(This article can be reprinted with the written permission from the author: jerold.bell@tufts.edu)

Related article – Outcrossing Does Not Equal Gene Pool Diversity

Photograph courtesy of Susan Roy Nelson is not intended to illustrate any point in the article, it is presented for your viewing pleasure only.

 

Save

Did Our Gene Pool Shrink (Again) in 2015?

In 2015 the number of AKC registered Gordon Setters continued it’s 20 year drop, down by another sixty dogs. Is there any end in sight to this trend, and are we seeing the first signs of extinction for some purebreds, including our own breed? In the last 20 years the Gordon Setter population has dropped by 71%. What is the impact to a breed like ours when 71% of their population is no longer available for breeding?

In the U.K., The Kennel Club considers the Gordon Setter as a “vulnerable” breed at only 234 registrations in 2015. I’m wondering how we should label the Gordon here in the states, considering that the population of the U.S.,  319 million, is nearly five times that of the U.K. at 64 million, but the U.S. Gordon Setter at 381 new registrations is only about one and a half times the 234 registrations in the U.K., a significantly smaller per capita number.

Could this mean that the breed is in an even more precarious and vulnerable position in the U.S.?

With this alarming decline in the breed’s population, if you’re breeding Gordon Setters there are a few things to consider as you go about planning new litters, and one of those considerations includes the need to develop a good understanding the of the gene pool and how your choices will impact preservation of the breed.

Your next litter is like a big fish in a small pond. As there fewer and fewer Gordon Setters whelped each year, the overall number of Gordon Setters available for breeding is dropping to an all time low, so litters that are born now will have a bigger impact on the future and preservation of the breed than the many litters that were born 20 years ago. Is it possible that we are losing genetic diversity in our breed population due to the decline in the overall number of new litters produced, and that our gene pool might also be shrinking? Unfortunately that answer may be Yes.

As breeders then, we need to ensure we have a basic understanding of genetic concepts and what it means to maintain genetic diversity. As our pool of fertile dogs continues to decline in number, the chance of finding unrelated genetically diverse dogs has fallen dramatically, which becomes especially relevant if we later find we need those dogs to help resolve a health issue from a newly recognized gene mutation.

Just as we pay attention to the need for health clearances when preparing for a litter, so too must we pay similar attention to understanding and analyzing the pedigrees of the resulting litter. Now is the time when we need to embrace the concept of preserving  offspring from the bloodlines of many various kennels and engage in preserving semen from healthy dogs of good quality, preserving many dogs of good quality from both show and field, not only those who are our top winners. Should we be doing more and more blending of the typical show and the field lines, or importing semen or dogs from other countries? These tactics and many more, now more than ever before need our attention, as breeders work to preserve the best qualities of our gorgeous breed, along with the diversity in our gene pool needed to safely continue the Gordon Setter in a healthy state.

With all that said, the following is an excellent article to get you started from The Institute of Canine Biology. It is a basic discussion about the gene pool. Today’s “Required Reading” for every Gordon Setter breeder I do believe!

What’s in the Gene Pool?

The founding of the breed – the Gene Pool

pool.jpgLet’s pretend these 11 dogs are the “founders” of your breed – they are the first dogs entered into the studbook.  All subsequent members of the breed are descended from these dogs only.  The breed has a closed gene pool.

All of the genetic variability that will ever exist in your new breed is present in these dogs.  Mutations probably won’t add new, useful genetic variation because most mutations are detrimental.  If the mutated gene is dominant and detrimental, it will likely be weeded out very quickly.  If the mutation is recessive, it is not expressed unless an animal is homozygous for the allele by inheriting a copy from each of its parents.  In the heterozygote condition, a mutated recessive allele can lurk in the genome for generations without ever causing a problem.  So, unless additional “founders” are added to the population at a later date, all of the genes you will ever have to work with in your breeding program are present in these dogs.

In each of these dogs there are at least a few (and perhaps many) recessive genes that could cause genetic disorders.  But these disorders will only expressed if a dog is homozygous for the disease allele – it must have TWO copies, one from each parent.  As long as the disease genes are rare in the population, very few animals will ever display the illness.

Can the gene pool get bigger? (No!)

Okay, starting with your 11 founder dogs, let’s let them reproduce.  To keep it simple, we will let them produce only identical copies of themselves – clones.

Now we have 27 dogs, all of which are exact copies of one of the founders.  What has happened to the size of the gene pool?

Nothing.pool1

You now have more dogs, and you now have more copies of the genes found in the dogs that had more offspring, like that busy gray dog with the red tongue.  So, the frequency of particular alleles is different in this population than in the founders, but the number of different alleles in the population is exactly the same.  (We’re ignoring the possibility of a mutation for now.)

What if the dogs reproduce normally instead of producing clones?  In sexual reproduction, each puppy receives one set of genes from each parent.  And, each puppy receives a different mix of parental genes, so each one is a bit different.  Also, each parent dog has a different number of offspring and might mate multiple times with different dogs.  So the frequency of the various alleles in the population could be very different in this new population than in the founders.

But again, even though there are now more dogs in the population, the gene pool does not get bigger.

In fact, it doesn’t matter how large this breed gets – it might someday grow to thousands of dogs – but as long as the stud book is closed, the gene pool will never be larger than it was when the breed is founded.

Can the gene pool get smaller?  (Yes!)

poo12The gene pool of a closed breed can never get bigger.  But it can get smaller.

What if dogs with black ears were less fertile, or had higher puppy mortality, or had some other biological problem?  The frequency in the population of the genes causing the black ears would be reduced by natural selection – black-eared dogs would contribute fewer copies of their genes to the next generation. Eventually, by genetic drift (chance) or natural selection, the genes in black-eared dogs would become rarer and rarer, and might eventually be eliminated from the population entirely.

What if breeders didn’t like black ears, so all the puppies with black ears were spayed or neutered and sent to pet homes?  Those alleles will become less frequent in the population, and they might be eliminated completely because of artificial selection courtesy of the breeder.

The gene pool gets smaller when genes are completely eliminated from the population.  It is unlikely that a gene will be restored by chance mutation, and the only other way it can be restored is if an animal is introduced into the breeding population that carries that gene and who reproduces successfully.

In purebred dogs, when the stud book is closed, no new alleles can be introduced into the breed.  The loss of an allele is permanent and reduces the heterozygosity in the genome for that gene.

http://www.instituteofcaninebiology.org/whats-in-the-gene-pool.html

Sally Gift, Mesa AZ

 

 

 

Save

Genetic Testing While Preserving the Best Breed Qualities – Let’s Start the Conversation

One of the most controversial topics, and the most difficult to teach about breeding, is the use of genetic testing and the application of those test results when choosing a mating pair to “improve and preserve the breed”. This is an area where it can often appear, especially to the less experienced breeder, that some prominent and successful breeders are talking out of both sides of our mouths. From one side we say genetic testing is a must if you intend to breed, and then from the other side we say “oh, but don’t throw the baby out with the bathwater” just because the dog is a carrier or affected doesn’t mean they shouldn’t be bred. Improving and preserving the Gordon Setter breed, is nowhere near as simple as choosing to mate only those dogs who pass every genetic clearance. Making the right breeding decision, finding the right sire for a dam… well it’s just not a black or white, right or wrong decision process. So, we’re going to say here, that the first and the most important thing a potential breeder needs to learn, before making breeding decisions, before assuming that the right choice is to breed only those dogs who clear every genetic test, the first thing that potential breeder needs to learn and completely understand is what constitutes a mediocre dog, a good dog and a great dog. With this understanding, one can then come prepared to recognize why, and when it is imperative to include great dogs in the gene pool – and yes, even those good and great dogs who did not clear every genetic hurdle may be needed in that gene pool. Remember, these dogs have many other qualities that are vital to preserving and improving the breed.

Photo by Bob Segal
Photo by Bob Segal

I read an article by Brian Lynn published by Paw Print Genetics that spoke about this topic. I’m sharing Brian’s article here as it fits with what I wanted us to be thinking, learning and talking about…how to use genetic testing appropriately, especially at a time when we must always consider the shrinking size of our breed population and thus our gene pool. We do need to encourage and promote genetic testing. We do NOT need to eliminate every dog who is affected or a carrier, but we do need to aptly apply the judicious choice of the appropriate breed qualities in the dogs we chose to breed. Breeders also need to be able to share every genetic test result on every dog, and they should be able to do so without fear of censor by their peers. The behaviors that cause our breed harm…breeders who cover or omit negative test results…and breeder/exhibitors who gossip about or denounce their peers who have shared information honestly and freely. Compete in the ring with each other folks, we don’t need to compete with each other over breeding choices, stud services and the like, there simply aren’t enough of us left to be that cut throat toward each other.

“When we breed to better a line of purebred dogs, many intangible or subjective variables come into play – conformation, athleticism, intelligence, trainability and more. Mentoring and experience, even the gut instinct borne from these teachings, can make assessing those variables easier. As we learn more and develop an eye for evaluating and reading dogs, the standards for what constitutes a ‘better’ dog, one worthy of breeding, usually rise. The comparative knowledge experience brings allows us to differentiate a ‘great dog’ from a ‘good’ one; what might have been an acceptable to us a decade ago, might not make the cut today. And therein creates the economic correlation of supply and demand among top breeders.

As we eliminate potential breeding partners in favor of ‘better’ dogs, those that will truly improve a line and therefore breed, fewer and fewer potential partners exist. That makes the remaining pool of dogs more desirable and valuable.

When the qualities that elevated a dog to the top of the gene pool are combined with the objective results of canine genetic screening, a breeder is truly ‘bettering the breed’ by passing along the best physical and mental qualities the dog possesses while reducing or eliminating detrimental genes.

However, some people believe genetic testing poses the risk of reducing the gene pool of quality dogs too much. Certainly, if you were to remove every dog that was determined to be an affected or a carrier of an inherited disease, that upper echelon of dogs within a breed could theoretically bottleneck (especially if it’s a small gene pool to begin with); and/or leave dogs that don’t complement and strengthen each other consistently enough to better the breed across necessary qualities, regardless of genetic diversity. True, the knowledge of genetic mutations in two dogs could prevent a top-notch breeding from taking place, but in the big picture of bettering a line and breed, that’s a small concession.

But that’s not how genetic screening works. Genetic screening of canines for inherited diseases provides the knowledge to breed responsibly and with scientific evidence. Breeding to a carrier, or especially affected, dog is a personal decision each of us must weigh, but it can be done safely. Using genetic science, we can determine the mode of inheritance, as well as the variability and expressivity of a gene. With the knowledge of today’s science, we can breed smarter and safer than ever before.

Genetic screening makes a dog a known quantity. Combined with its physical, mental and psychological qualities, genetic screening allows for healthier decision-making choices that truly ‘better the breed.’ The fact that a dog is a known quantity in a gene pool makes it more valuable; a dog’s accomplishments set it apart from the general population, and genetic screening, regardless of results, put it in an even more elite pool of dogs.” read more here

So, this is where the conversation turns to you. I’ve said my small piece and offered food for thought through Brian’s article. Time for you all to join in here and share your thoughts, opinions and questions.

Photographs by Bob Segal

Sally Gift, Mesa AZ

Save

CHIC for DUMMIES – What is it – why should I use it?

This ought to be good – and yes that’s sarcasm!  I’m going to try to take all the long words and even longer sentences that describe CHIC (Canine Health Information Center) and boil them down to a few bullet points that briefly explain who, what, when, where, and how this thing works. To get a full explanation and a complete understanding of CHIC and it’s importance to the Gordon Setter you must read their home page for which I’ve supplied a link below.

WHO

WHAT

  • CHIC collects information about health issues (Gordon Setters).
  • CHIC gives advice about the health screening tests we (owners) need to do to improve the chances of Gordon Setters being born without those health issues.
  • CHIC keeps records of the dogs that are screened and a database of all those test results.
  • CHIC issues a number  when all screening tests are done on a dog – this number does not mean all tests were negative or clear.

WHEN

  • We (owners) screen or test Gordon Setters for the health issues CHIC told us about before breeding.
  •  We send our dog’s test results and DNA samples to the CHIC database and storage bank.
  • We send CHIC updated health information on our dog when a new or different issue comes up.

HOW

  • CHIC sends researchers our dog’s DNA when it’s needed for new research projects.
  • CHIC keeps parent club (owners) up to date on current health trends in the breed based on the data that we sent them.
  • Researchers find new answers to breeding healthy Gordon Setters.

And they all lived happily ever after…the End!

CHIC - breed health improvement plan

Save

Save

Save

Save

The CHIC DNA Repository for Gordon Setters

Thank you Jerold S Bell, DVM, Tufts Cummings School of Veterinary Medicine, N. Grafton, MA for your permission to reprint this article.

This article first appeared in the November 2006 TarTan Gordon Setter Club newsletter.
The CHIC DNA repository is a joint project of the AKC Canine Health Foundation (CHF), the Orthopedic Foundation for Animals (OFA), and the Canine Health Information Center (CHIC). It is open to all breeds of dogs. The stated objectives of the program are to: Facilitate more rapid research progress by expediting the sample collection process; Provide researchers with optimized family groups needed for research; Allow breeders to take advantage of future DNA based disease tests as they become available; and to Foster a team environment between breeders/owners and the research community improving the likelihood of genetic discovery.
A DNA repository is an endowment for the breed’s future. It is a centralized, multigenerational DNA storage bank. It will allow future, qualified researchers to be able to investigate genetic diseases in the breed. Presently, many funded genetic studies in other breeds have not been completed because of the lack of necessary DNA. By storing DNA from full families and large breeding populations, funded research would not have to wait, as stored DNA samples would be readily available to approved researchers. In order for researchers to have access to the DNA at the CHIC DNA Repository, they must go through an application and scientific review process with the AKC-CHF and CHIC.
If we had the ability to store DNA in during the past twenty-five years from Gordon Setter cerebellar abiotrophy (CCA) families, Dr. Olby at NC State would be studying the disease directly in the Gordon Setter now. Instead, we are relying on progress from the gene search in other breeds to allow comparison with the limited Gordon Setter DNA samples presently collected.
A centralized DNA repository allows for a single DNA collection from each dog to benefit all qualified researchers in genetic diseases affecting Gordon Setters. Currently, individual researchers rely on DNA collection for their own research and storage at their respective institutions. Those samples are not available to other researchers or research projects. Also, those samples may not be saved once the research is completed.
The CHIC DNA registry combines a DNA sample with the dog’s pedigree and medical history. Owners fill out an application and a health questionnaire detailing pertinent health information on the dog. In this way, dogs with specific diagnoses can be identified for future health research. If a dog’s health status changes, owners should inform CHIC to update their information. CHIC will also contact owners approximately every two years for health updates.
The stored DNA is coded so the identity of dogs is not provided to researchers. If further family history or follow-up is needed, contact with owners will be initiated by CHIC.
Due to the initiative taken by the TarTan Gordon Setter Club, Inc an agreement has been reached with CHIC where the fee for blood sample submission for any Gordon Setter is currently reduced from $20 to $10. Cheek swab submissions are $5.
A blood sample is preferable to cheek swab collection, as it contains the largest quantity of DNA. This allows for multiple research projects to use the sample without running out of DNA. Blood samples are sent to the Animal Molecular Genetics Laboratory at the University of Missouri for DNA extraction and storage. If a cheek swab is collected, it is sent to the Veterinary Genetics Lab at the University of California at Davis for storage.
The CHIC DNA repository is a storage bank strictly for research purposes. CHIC DNA samples cannot be used for any other purpose.
AKC DNA profile samples are used solely for identification, litter verification, and frequent sire programs. AKC DNA samples cannot be used for any other purpose.
Samples for the CHIC DNA repository must come from the owner of the dog. If in the past, you donated a DNA sample for other research, you will need to send an additional sample for storage in the CHIC DNA repository.
When a genetic test is developed in the breed, owners can request, at their own expense, that a DNA sample stored in the CHIC DNA repository be forwarded to the established laboratory for testing. If the research to develop a genetic test was done on DNA repository samples, it will be that research laboratory’s decision whether they determine dog ownership from CHIC and notify owners of test results.
More information on the CHIC DNA repository can be found on the CHIC website:
http://www.caninehealthinfo.org/dnabank.html
Requests for reprinting should be made to the author: jerold.bell@tufts.edu

Photo by Susan Roy Nelson

(This article contains photos that are not intended nor do they relate to the content of the article.)